文章摘要:网络嵌入旨在利用网络特性学习节点的低维向量表示,已被广泛地应用于数据挖掘领域。现有的异质网络嵌入方法不仅忽略了网络中的异质边及其对节点嵌入的不同影响,还未考虑到网络结构与节点属性的融合。为此提出了一种融合属性信息的异质网络嵌入方法(SHANE)。将序列到序列(seq2seq)模型应用到依据边类型划分的子图中,无缝融合节点的结构信息和属性信息,同时捕捉节点的高阶语义信息。实验表明,SHANE在两个不同类型的数据集中进行链接预测任务,可以取得相对显著的效果。
文章关键词:
项目基金:《信息记录材料》 网址: http://www.xxjlcl.cn/qikandaodu/2022/0120/2468.html
信息记录材料投稿 | 信息记录材料编辑部| 信息记录材料版面费 | 信息记录材料论文发表 | 信息记录材料最新目录
Copyright © 2018 《信息记录材料》杂志社 版权所有
投稿电话: 投稿邮箱: